IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

Cloak: Hiding Retrieval Information in Blockchain
Systems via Distributed Query Requests

Jiang Xiao, Member, IEEE, Jian Chang, Student Member, IEEE, Licheng Lin, Student Member, IEEE,
Binhong Li, Student Member, IEEE, Xiaohai Dai, Member, IEEE, Zehui Xiong, Member, IEEE, Kim-Kwang
Raymond Choo, Senior Member, IEEE, Keke Gai, Senior Member, IEEE, and Hai Jin, Fellow, IEEE

Abstract—The privacy-preserving query is critical for modern blockchain systems, especially when supporting many crucial
applications such as finance and healthcare. Recent advances in blockchain query schemes mainly focus on enhancing the traceability
efficiency of integrity authentication. Despite these efforts, we argue that the exposure of retrieval information may result in privacy
leakage, which inevitably poses an important yet unresolved challenge. In this paper, we introduce Cloak, a novel privacy-preserving
blockchain query scheme with two notable features. First, it utilizes a two-phase distributed query requests technique, i.e., division and
aggregation, to hide retrieval information based on the natural independent characteristic of blockchain. Second, we add noise to the
sub-request set to avoid malicious attacks during transmission and adopt smart contract-based asymmetric encryption to guarantee
the correctness of query results. Experimental results demonstrate that Cloak improves the query performance by up to 4x and
reduces the storage overhead by 50% compared with the state-of-the-art Spiral.

Index Terms—Blockchain, Privacy-preserving, Distributed query, Lightweight client.

1 INTRODUCTION

LOCKCHAIN systems with traceability are now appeal-
Bing to facilitate a wide range of applications, includ-
ing finance, logistics, and healthcare [1]. Its traceability
can be realized by the blockchain query mechanism on
the immutable on-chain historical data [2]. Traditionally,
a blockchain client (i.e., lightweight node) with limited
computing and storage resources can only proceed with the
query requests on the full nodes that store a complete his-
tory of data [3], [4]. However, as the query processing relies
on the single full node, the malicious behavior of the full
node in an untrusted blockchain environment may cause
private information leakage of the client’s query request.

Consider a concrete example of a blockchain-based
healthcare system. A patient wishes to query for drugs asso-
ciated with some disease (e.g., Nucleoside Reverse Transcrip-
tase Inhibitors (NRTIs) or Non-Nucleoside Reverse Transcriptase
Inhibitors (NNRTIs) for HIV) through the blockchain-based
healthcare system. If the disease’ or drug’s name forms the

e This work was supported by National Key Research and Development
Program of China under Grant No. 2021YFB2700700, Key Research and
Development Program of Hubei Province No. 2021BEA164. (Correspond-
ing author: Jian Chang.)

e Jiang Xiao, Jian Chang, Licheng Lin, Binhong Li, Xiaohai Dai, and
Hai Jin are with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and
System Laboratory, and the Cluster and Grid Computing Laboratory,
School of Computer Science and Technology, Huazhong University
of Science and Technology, Wuhan 430074, China (e-mail: jiangx-
iao@hust.edu.cn; j_chang@hust.edu.cn; lichenglin@hust.edu.cn; bin-
hong@hust.edu.cn; daixh@hust.edu.cn; hjin@hust.edu.cn).

o Zehui Xiong is with the Singapore University of Technology and Design,
Singapore (email: zehui_xiong@sutd.edu.sg)

o Kim-Kwang Raymond Choo is with the Department of Information
Systems and Cyber Security, University of Texas at San Antonio, USA
(email: raymond.choo@fulbrightmail.org)

o Keke Gai is with the School of Cyberspace Science and Technology, Beijing
Institute of Technology, Beijing 100081, China (email: gaikeke@bit.edu.cn)

query content, then the requested content will indirectly
infer that the patient may have such a condition. Hence, po-
tential privacy leakage will occur during the query request
process, and a malicious node can infer the client’s private
health information [5].

There are currently two main approaches to protecting
data privacy on the blockchain. One approach is based on
the Trusted Execution Environment (TEE) to achieve confi-
dentiality (e.g., Ekiden [6], BITE [7], and DeSearch [8]). In
TEE, query processing is executed independently and can be
performed in parallel to improve query performance. How-
ever, the enclave size is limited in TEE, with a maximum
capacity of 256M, and cannot be widely used. In addition,
it also relies on centralized hardware, which suffers from
rollback and other attacks [9]. Another approach is based
on data encryption mechanisms, such as homomorphic
encryption [10] and attribute-based encryption [11], which
leverages the complex ciphertext to resolve the problem of
data privacy leakage. Nevertheless, the query processing
relies on a single centralized node, and the malicious node
can still uncover the user identity from encrypted query
requests [12]. It can be observed that the existing methods
are still limited to a centralized query framework and do not
fully use the characteristics of multiple independent ledgers
in blockchain to provide more effective privacy protection.

In this paper, we design Cloak, the first privacy-
preserving query scheme to support effective privacy
protection and verifiability of distributed requests for
blockchain lightweight clients. The key idea is to leverage
multiple independent ledgers of blockchain full nodes to
realize distributed privacy protection. Our goal is to protect
the query request submitted by the query client to the
full node and to execute the query without revealing the
private retrieval information. In other words, neither the
broadcast of query requests nor the malicious attacks will

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

expose information that violates privacy. Specifically, Cloak
guarantees a reliable query privacy protection feature in
the sense that a malicious node can know which client is
sending a request but will not know what the client queried.
More importantly, Cloak does not leak the access pattern or
correlation between request and results, and clients can still
verify results (i.e., ensuring correctness and completeness).
We highlight the salient features of the proposed design
below.

Distributed privacy-preserving query. Based on the
independent ledger feature of the blockchain, we leverage
distributed requests to realize the privacy protection of
blockchain queries for lightweight clients. The client can
submit a distributed set of query requests to full nodes
and aggregate the results that are synchronized with the
blockchain. In Cloak, we propose a new protocol, named ‘n-
node’ distributed query, which differs from existing works.
Generally speaking, we leverage distributed functions to
divide a query request among multiple nodes and then
aggregate the data from different nodes. In this way, the
desired result can be obtained from distributed nodes with-
out revealing the client’s private data. In addition, the one-
to-one sub-request query process is extended to a one-to-
n request process in the distributed query process. Due to
the mutual independence between full nodes, any full node
that performs sub-request queries cannot obtain the original
query content and complete query results. The same sub-
request queries different full nodes and verifies the returned
results. When the number of consistent results exceeds half
of the total fragmented results, the correctness of the query
results can be guaranteed.

Secure data transmission. To shield the query data
during transmission, we add the noises to the requests. In
particular, when a client creates random sub-requests from
the distributed function, the pseudo-random function will
also generate the noises. When a client sends a sub-request
query, both the noise and the request are sent, namely noise-
based distributed requests. An adversary cannot obtain the
original query content from any sub-request set with noises
embedded. At the same time, smart contract-based asymmetric
encryption is introduced for the returned result to ensure
the security of the requested content during transmission.
The client sends sub-requests to multiple full nodes to
tolerate the malicious behavior of untrusted nodes during
the query process and verify the encrypted results to ensure
correctness.

In summary, we make the following contributions:

o We propose Cloak, a distributed privacy-preserving
query framework, which leverages the characteristics
of the distributed independent ledger of blockchain
to protect the privacy of client query requests.

o To protect the privacy of request content for the
lightweight client, we leverage a two-phase dis-
tributed query requests technique, i.e., division and
aggregation, to hide retrieval information.

e We add noise-based distributed requests and smart
contract-based asymmetric encryption to guarantee
the correctness of query results.

o Experimental results show that Cloak provides sig-
nificant privacy protection for lightweight clients

@
Requesty: Medicine A @\
Responsey: NRTIs
Request,: Medicine B @‘
‘% Responsey,: NNRTIs k

Client . .

)

Request;,: Hospital

Responsey,: Hospital C

(a) Scenario 1: interception attacks during query transmission process

&

Client

O

—t
==

Request;;: Medicine A

Response,;: NRTls Honest

I
= NRTIs
S =
"Malicious NNRTIs

(b) Scenario 2: malicious attacks on retrieval information

Request;,: Medicine A

Response,:i NNRTIs i

Fig. 1: Two privacy leakage scenarios of distributed query
requests in blockchain systems

with sensitive information independent of specific
hardware and does not affect overall system perfor-
mance.

The rest of this paper is organized as follows: In Section
2, we outline Cloak’s research background and motivation
before introducing the relevant preliminary materials in
Section 3. Sections 4 and 5 describe Cloak’s system design
and performance evaluation results, respectively. Finally, we
review related approaches in Section 6 before concluding
this work in Section 7.

2 MOTIVATION AND CHALLENGES

Data query is a necessity for clients (i.e., lightweight nodes)
to retrieve valuable information from servers (i.e., full
nodes) on blockchain [13]. To motivate the design of Cloak,
we present the following two scenarios to illustrate the
privacy leakage for clients during the request process and
from malicious full nodes.

2.1 Motivating Examples

Malicious full nodes can obtain the query request of a client
and infer information such as the identity and needs of
the client, leading to the risks of privacy leakage of the
client’s location and health. There are two aspects of privacy
leakage in an untrusted blockchain environment when the
lightweight client performs a data query.

Scenario 1: Privacy leakage by interception attacks dur-
ing the query transmission process. Suppose a lightweight
client sends a query request containing medicine A and
medicine B to a full node. Full nodes store all medicines
and healthcare data in the blockchain medical system. The

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

hackers can intercept retrieval information during the data
transmission process and learn that the medicine is used to
treat HIV, as shown in Fig. 1(a). The hacker continues to
intercept other client requests and obtains that the client has
HIV in hospital C. The hacker infers personal health infor-
mation, such as specific diseases corresponding to the client,
through this process. Worse still, the hackers can manip-
ulate the requests with uninteresting advertising messages
or spam. To address this issue, the search engine Google
adopts DNT (Do Not Track) request service to prevent user
information from being tracked [14]. DNT service provides
optional privacy control over the search content of a user.
It’s equivalent to telling the website: please don’t follow
me, but most browser websites reject and ignore users’
requests for DNT service. This service provided by search
engines has been in a state of failure for query users, and
the user’s request content cannot be effectively guaranteed.
They cannot know whether their query request information
is tracked. Therefore, the client should not wholly trust the
network transmission or search engine services and directly
send query requests with the plaintext to the full node.

Scenario 2: Privacy leakage by malicious attacks on
retrieval information. When the full node receives the
query request from the client, it first analyzes the status of
the query request. If the request is in plaintext state, the full
node can directly query the data through the request [15].
This process completely trusts the full node. However,
supposing that the full node is malicious, it can arbitrarily
obtain the client’s query request and results. In that case, the
data that involves clients” private information will be leaked
entirely to malicious nodes. More seriously, the query results
returned by the full node may also be tampered with by
selfish motivation, as shown in Fig. 1(b). If the query request
is encrypted, the full node needs to obtain the corresponding
data access authority or data decryption key through the
client and then perform a data query. In this way, the client’s
query request can avoid leakage during transmission, and
the data query of the full node needs to rely on the consent
of the lightweight node, which can partially protect privacy.
But in the same way, if the node is malicious, although the
data is encrypted, the full node can obtain the approximate
content of the query data by analyzing the access pattern of
the encrypted data. Therefore, the client relies on a single
full node to query sensitive data, leading to privacy leakage
during the query process.

2.2 Challenges

In view of the existence of malicious nodes in the
blockchain system, when encrypted data is used to protect
user confidentiality, the data still needs to be decrypted
when relying on full nodes for a query. The original data
confidentiality problem solved by these systems is differ-
ent from the query request protection problem that Cloak
tries to solve. Instead, we propose distributed, verifiable
privacy-preserving querying over plaintext data generated
by lightweight clients. To make the problem more concrete,
the data can be viewed as a binary array D = [dy, ..., dj_1]
of length [, and n > 2 nodes independently store the
same ledger data. The client wants to query data d; but
does not want the full node to know that the queried data

3

is with index 7. Currently, we concentrate on the entire
blockchain data query @) = (i), which can also be extended
to time range queries to meet the diverse future needs
of blockchain users. To elaborate on time range queries,
we provide the following formal specification: The query
Q = (i,< tstart,lena >) targets data within a defined
historical time range, facilitating the retrieval of information
from the designated start block with timestamp %5+ to
end block with timestamp ?.,q. This query variant proves
particularly valuable for applications necessitating the anal-
ysis of blockchain data over specific periods, such as fi-
nancial audits, transaction trend analysis, and regulatory
compliance checks. For historical time range queries, effi-
cient scoping of the query becomes imperative. This entails
leveraging blockchain indexing techniques to swiftly iden-
tify and retrieve pertinent blocks within the specified time
range, thereby enhancing the system query performance
and facilitating seamless data retrieval.

When a client (lightweight node) is querying in
blockchain, a primary overlooked issue is that requesting
data can also lead to privacy leaks. Since the full blockchain
nodes handle the query process, the query operation and re-
quest data are transparent. However, this is flawed for spe-
cific cases dealing with user-sensitive data, such as patents
and stock. When the client needs to query the full node for
patent information that they are preparing to apply for, they
do not want to leak the query request data to avoid being
preemptively registered by others. Investors like Warren
Buffet want to inquire about specific stock information in
the stock market. However, he is unwilling to disclose the
stocks that he is interested in to affect the stock price and
his preferences.

These cases show that clients” potential privacy will be
leaked. Therefore, a novel privacy protection mechanism
must be considered to protect potential privacy in the query
request process. The challenges of protecting blockchain
query requests include two main aspects.

Challenge 1: How to avoid leakage during the broadcast of
query requests? The query request is intercepted: hackers can
learn the content of the query request and the query result.

Challenge 2: How to prevent leakage by the malicious node?
The query operation is exposed: a malicious node can know
the query request and tamper with the result.

3 PRELIMINARIES

This section defines the basics involved in privacy-
preserving query schemes, which mainly include smart
contracts and distributed point functions. We also discuss
the advantages of adopting these fundamentals. Table 1 lists
the primary notations used in Cloak.

3.1 Smart Contract

Smart contracts were not widely used in the initial era of
the blockchain, mainly represented by the Bitcoin system.
The emergence of Ethereum opened the prelude to the
blockchain 2.0 era defined by smart contracts [16]. Smart
contracts make blockchain applications more convenient
and expandable. The main advantages are: (1) It has the
characteristics of high timeliness and decentralization of

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

TABLE 1: Summary of primary notations

Notation Meaning

D the binary array data stored independently on full node
d; the queried data with index ¢

l the length of data D

n the number of full node

F,u(x) the distributed point function where its value is b at a
ki the i-th key

Gen() the algorithm that outputs a pair of keys

Eval() the evaluation algorithm outputs a value

Fy the denotation of function Eval(k, -)

i the denotation of i-th full node

F; ,(x) the distributed point function where its value is v at ¢

X! the i-th request

F(X)) the denotation of Eval(K;, X])

Y the result of function F'(X))

R; the blockchain index benefit

K; the i-th vector

m the power of matrix rows

u the power of matrix columns

G the pseudorandom generator

DPF, the vector-based distributed point function
Geni() the generation algorithm of DPF;

Evali() the evaluation algorithm of DPF}

Deci() the output decoding function of DPF;

Q the query request set n,,

A the answer set

q; the i-th sub-request

a; the i-th result

e the power of entry data set

B the size of output data

o the row vector of grid

Syr g the j-th random string

cw; the i-th random vector

es the d-th unit vector

E, the set of all arrays with an even number of 1 bits
On the set of all arrays with an odd number of 1 bits
p the proportion of malicious nodes

0 the probability of at least one honest node

O the probability of more than half of the honest nodes

contract formulation and does not need to rely on the par-
ticipation of third-party authorities or central institutions.
(2) It has a low cost. Smart contracts are based on computer
programs and are controlled by pre-established codes, re-
ducing supervision costs. (3) With very high accuracy, no
human participation is required, and automatic execution
improves the accuracy of the contract.

The smart contract code is deployed on a shared, repli-
cated ledger that maintains its state and responds to incom-
ing external information. The code contains some control
conditions that trigger automatic execution, and the relevant
results are recorded in the blockchain ledger after the code is
executed. When sent to all devices connected to the network,
the user can agree on the result of executing the program
code and always follow the rules in advance. For example,
smart contracts written in the statically typed programming
language Solidity can run independently on the Ethereum
Virtual Machine (EVM). With Solidity, users can program an
auto-executing application based on scenario requirements,
regarded as an authoritative and never-repentant trading
contract. The application scenarios of smart contracts, such
as combining with the Internet of Things to enable smart
homes, voting, etc., are all application scenarios. In other
words, scenarios where machine language can be used to
implement established rules, improve efficiency, and pre-
vent users from cheating are the application scenarios of
smart contracts.

3.2 Distributed Point Function

Distributed Point Function (DPF) is a privacy protection
method that uses distributed features to encrypt data [17].
It divides the shared function into multiple parts for dis-
tributed computation. Each process has a piece of informa-
tion and calculates the result without exposing the origi-
nal information to any procedure. In fact, in a blockchain
network, there may be malicious nodes. To prevent the
requested node from being hostile, the client can send query
requests to multiple nodes to reduce the connection proba-
bility of malicious nodes. The point function is the most
fundamental part of the distributed point function. Given
any two values a and b one can define a point function
F,»(z) by

b Ve, r=a
F, = ’ 1
2(@) {0 Ve, x#a)

The function graph of F,, ,(x) is a discrete point, for exam-
ple, if F, (1) = 2, F, 5(2) = 4, and the rest are 0. Therefore,
only when = € 1,2, F, () is not 0, which is reflected in
the graph, except for the two points of (1,2) and (2,4), the
other points fall on the z axis. It is zero everywhere except
at a, where its value is b.

Simply, a distributed point function can be implemented
with a point function F,(z) with two keys ki and k.
The privacy protection of query content can be realized
by leveraging the distributed point function. DPF allows
the client to divide a point function into multiple sub-
function fragments. Any proper subset of sub-function frag-
ments does not leak any information about the original
function. The full node calculates the value of the sub-
function according to x and returns it to the client, and
the client can aggregate the result. Gen() generates keys
k1, kao: Gen(a,b) — (k1, ko) that allow the full node union
to compute the point function calculated as b at the input
a. Each key hides a and b separately, but there is a valid
algorithm Fval for each a.

Eval(ky,z) ® Eval(ke, z) = Fyp(z))

Letting F), represent the function Ewval(k,z), and the
functions Fj, and F}, can be viewed as an additive secret
sharing of F}, ;(z). When the client sends query information
to nodel and node2, they return the corresponding partial
query results according to the keys in the distributed point
function. The client obtains the result by XOR of two sub-
query results, which can hide the requested information.

4 SYSTEM DESIGN

In this section, we elaborate on the system design of Cloak,
which realizes the privacy protection of query requests in
the face of challenges pinpointed in Section 2.2. We first
present the design principles and overview of Cloak. Then,
to meet the system requirements, we introduce the crucial
components separately, including secure data transmission
and a distributed query process.

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

Noise-based ‘ Sub-request Processing

Request Sub-requests ¥
‘ Consistency Verification
R
esponse Smart Contract- ¥

Client

based Encryption ’ Response Aggregation

Secure data transmission Distributed query process

Fig. 2: The system overview of Cloak

4.1 Design Principles

The goal is to devise a scheme that supports more efficient
privacy-preserving queries for lightweight clients. All Bit-
coin and other popular public blockchain systems transac-
tions are transparent: every node can synchronize and verify
the on-chain data. Clients can generate pseudonyms using
one-off encryption keys for addresses, but the processing
details of the user’s anonymous address transactions and
the relationship between the addresses are still transparent.
More specifically, our resolution can meet the following
requirements:

e R1: Lightweight clients can query what they need
without revealing the requested content and query
results to the potentially untrusted transaction
broadcast.

e R2: A full node cannot learn the requested content
and query result from the lightweight client to gener-
ate additional information about the client’s potential
identity or behavior.

4.2 Cloak Overview

In general, the Cloak system works similarly as presented
in Section 2, where a client sends sub-query requests to
full nodes and waits for the responses. However, to prevent
malicious actions taken by the hackers or full nodes, we pro-
pose a secure data transmission mechanism and distributed
query process mechanism in Cloak, respectively, as shown
in Fig. 2.

Concretely speaking, during data transmission, we add
noise to the requests and implement asymmetric encryption
based on smart contracts, thus protecting data privacy. On
the full node’s side, we present a distributed query scheme
based on the blockchain’s independent ledger feature. Un-
like searchable encryption of high-overhead ciphertext re-
trieval or a trusted execution environment that relies on ad-
ditional hardware, we leverage distributed point functions
to decompose the query requests and then aggregate the
responses to hide retrieval information.

4.3 Secure Data Transmission

To ensure network communication security, it is necessary
to encrypt the data transmitted on the network. The current
primary method is to rely on the Transport Layer Security
(TLS) to secure communications. The client uses asymmetric
encryption to communicate with the full node to achieve
identity verification and negotiate the key used for symmet-
ric encryption. Then, the symmetric encryption algorithm
uses the negotiated key to encrypt the information and the

5
Client Hacker Full Nodes
2, ;
Q=Random 0’ (noise) | Quer
. i 4
1,0, 09 0, ! Processing
E Noise-based
! Sub-requests
AFEnc®) .
A =Enc(’ R) E @«:i
R=Dec(dl, 42) AFE ne(®y) : Smart Contract-

based Encryption

PriKey PubKey

Fig. 3: The secure data transmission of lightweight client
requests to full nodes

information digest. Different nodes use symmetric keys to
ensure that only the communicating parties can obtain the
data.

However, this method has man-in-the-middle attacks
during transmission. The attacker creates independent con-
nections with both ends of the communication and ex-
changes the data they receive, making the two ends mistak-
enly believe they are directly talking to each other through
a private connection. Still, the whole session is entirely
controlled by the attacker. Moreover, the Certificate Authen-
tication (CA) center of TLS constitutes a valuable target
for malicious attackers, resulting in severe data breaches
and leakage. In Cloak, we advocate a client-oriented query
transmission design in that the query request will be split
and encrypted by the client to deal with Challenge 1 and
meet requirement R1. In this way, it gives more control back
to the client and can guarantee privacy. In particular, we pro-
pose two mechanisms to achieve secure data transmission:
noise-based distributed requests and smart contract-based
asymmetric encryption, whose schematic diagram is shown
in Fig. 3.

Noise-based Distributed Requests. The query request
is split through a distributed function and sent to different
full nodes. In this way, hackers intercepting any subset of
the set of sub-requests cannot acquire the original request
content. However, this method also brings a new problem:
how to keep the hacker from getting real query content if
it possesses all the sub-requests? When a hacker intercepts
all sub-requests, although s/he cannot recover the original
request, s/he can send all sub-requests to full nodes for
the query to obtain the corresponding query results. To
deal with this problem, we add noises to the sub-request
set, which ensures that any combination of sub-requests
cannot recover query results. In addition, while generating
sub-requests by distributed functions, corresponding noise
requests are also generated. Instead of adding noises to
the result in differential privacy, we add noises to the
query sub-requests. The advantage is that our approach
is more preventive and request-oriented in the pre-query
stage, whereas differential privacy is result-oriented in the
post-query stage. The noise and standard requests are sent
simultaneously when the client sends a sub-request query.
In this way, even if the hacker intercepts all the sub-requests,
the query result cannot be obtained, thus protecting the
privacy and security of the request during the sending

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

process.

Smart Contract-based Asymmetric Encryption. To en-
sure the security of the transmission process, the asymmetric
encryption method is used to encrypt the query results.
However, there is also an important problem: how to pre-
vent the hacker from collecting returned query results with
the asymmetric public key? In other words, it can be difficult
for a full node to prove that the transmitted public key is
announced by the client rather than tuned by the attacker.
Traditionally, we can use the public key certificate issued
by the CA and its related agencies to solve this problem.
However, CA turns out to be a third-party organization
that needs trust from both the client and the full node. To
overcome this bottleneck, we recur to the smart contract to
realize the decentralized trust without relying on digital CA.
A smart contract-based asymmetric encryption scheme is
used to protect the privacy of returned data, which does not
depend on the TLS protocol at the network transport layer.
In this regard, the public key is releasable for any full node
to use, and the client owns the private key for decryption.

4.4 Distributed Query Process

In this section, we first introduce a strawman design with
some problems therein to deal with Challenge 2 and meet re-
quirement R2. To solve these problems, the vector-based and
one-to-n request mechanism of Cloak is proposed. Recall the
scenario we mentioned earlier, a client wants to query an
element with index i (i.e., d;) from data D = [do, ..., d;—1],
where [represents the total length of D. In the untrusted
environment, all the independent full nodes hold D, and
more than half of them are honest nodes. The client wants
to get the data d; without revealing the index ¢ to any
full node. Generally speaking, we achieve this privacy-
preserving query scheme based on the blockchain’s inherent
distributed independent ledger feature.

4.4.1 Strawman

To aid the presentation of the distributed query process
in Cloak, we first introduce a two-node strawman design,
which can work roughly but suffers from a new challenge.
The strawman is designed for a blockchain system consist-
ing of two full nodes (p; and p) and a client, where p; and
po store the identical data D. Let F; ,(z) be a function to
return the value according to the value of x, where 4 and v
represent the index and corresponding value in D. If z =3,
F, »(z) = v; otherwise, namely = # i, F; ,(z) = 0. A client
wants to query the D for information with the entry ¢. Two
query requests, X{ and X}, are delivered to nodel and
node2, respectively. Nodel and node2 calculate indepen-
dently F(X{) = Eval(K1,X1), F(X}) = Eval(K2, X}5),
and sent F(X1), F(X}) to the client respectively. Then, the
client gathers these two answers and only needs to compute
Y = F(X{) ® F(X}). If the query object = does exist, then
theresultis Y = F(X]) @ F(X}) = F; ,(x =) = v, if not
there is the result Y = F'(X{) & F(X3) = F; ,(x # i) = 0.

A properly distributed point function needs to be con-
structed. The simple way is to construct a truth table ac-
cording to all possible input z as follows:

v, T=1
Y_{O, x Fi ®)

6

Based on a random function G to generate R;, let F'(X]) =
R;and F(X}) = R;®Y; (i = 1,2, ..., 2/?l), as shown in Table
2. When the client sends query requests to full nodes, they
return the answer according to the truth table. However, this
comes with a new problem: the size of the truth table grows
exponentially with the length of the query data, making it
difficult to be practical.

TABLE 2: The truth table of distributed point function

X' Y F(X7) F(X3)
X1 Y1 Ry RN
Xé Yo Ro Ro ® Yo
X} Ys Rs3 R3® Y3
X1l Yya| Ryje| Ryja) & Yy a)

In the distributed query process, the lightweight client
splits the query request into multiple sub-requests and
sends them to the full node for the query. However, there
are untrusted full nodes on the blockchain. The connected
full nodes may have malicious behaviors, so it is necessary
to tolerate malicious nodes and verify the query results
returned by the full nodes. In other words, there is a new
problem: How to overcome the obstacle of malicious nodes
appearing on connected nodes in the query process? That is,
an untrusted node can produce malicious behaviors, such
as denial of service, and return inconsistent results. If a sub-
request connects to a malicious node one-to-one, the query
result must be invalid.

4.4.2 Cloak

As mentioned above, the size of the truth table is too large
in section 4.4.1 (Strawman). To solve this problem, an ad-
vanced vector-based DPF; = (Geny, Evaly) is constructed.
We also propose a practical and scalable n-node solution
(Cloak), and convert the one-to-one sub-request request
process into a one-to-n batching query process for malicious
behaviors, as shown in Fig. ??.

Consider the input of F;,(z), and its total input space
is of size 2!7l. If all possible inputs x are listed in matrix
form, the matrix will contain 2™ rows and 2" columns,
where m + u = |z|. Each element in the matrix corresponds
to a possible input of z, and each x can be converted in
the format of coordinates (row, column) in the matrix. The
random 0 — 1 bit group builder G : {0,1}* — {0,1}*"
takes the bit vector of length A as input and returns a
random bit vector of size 2“ as output. Gen; generates two
vectors of size 2™ + 1 with only one bit being different. The
two vectors will be assigned to K; and K>, respectively.
In other words, we have K; = (sq,...,8,...,50m) and
K2 = <817 ooy Sll, ceey ng>.

Given input 2/, where 2’ = (¢/, j'). The pseudo-random
number generator G calculates G(K[i']) and generates a bit
vector of size 2%, where K [i'] means the value with the index
i’ in K, namely s;.. Therefore, Evaly (K, 2’) will return the
Jin, vector among 2* vectors, namely G(K[i'])[5'].

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

Fig. 4: Privacy-preserving N-node Cloak protocol during distributed query process in the case of malicious nodes

® ©

® ®

Random Random =4

Input Index: Matrix Vector P Node Data Response Result
1 1 n 1

é e E - =™ (1)
(0] Gl 1inlnla

] @ OO0 @ =T plalaiiol @01 -)0) 1)

—
H OO0 G EEEE-e ® (o]
0
DG cws o e X =Td) - I-Jo |

1'st Query Vector 2'nd Query Vector

Fig. 5: The distributed vector computation process of Cloak

For each 2’ = (i, j'), we have the following equation:
Evaly (K1, z") ® Evaly (Ka, x')

_ {G(s%)[j'] FGE, P =i @)

G(si)lj'] + G(s)[j'] =0, & #i

We now present a scalable n-node Cloak based on
DPF, which prevents any alliance of up to n-1 malicious
nodes. An n-node Cloak protocol involves n full nodes
Di, ..., Pn, storing the identical data D, and a client who
wants to retrieve the bit d; of D. The protocol P =
(Q, A,Geny, Evaly, Decy) consists of a random probability
distribution query request set Q@ = {q1,...,¢n}, an answer
set A = {ai,...,a,}, a random request generating function
Geny, an answering function Eval;, and a reconstruction
function Dec;. To start the protocol, the client picks a
random seed and computes a query q; = Geny(j,r). The
query is then sent to each node p;. Each node responds
with an answer a; = Evali(g;, D). Finally, the client com-
putes the bit d; by applying the reconstruction algorithm
Deci(ay, ..., an).

The 2%-entry data set of the distributed point func-
tion F;,(x) : {0,1}* — {0,1}” can be regarded as a
20/2 x 2%/2 grid. Geen, generates random requests. For the
row 7/ € {0,1}%/2, it consists of 2"~ ! random \-bit strings
5471 s So7 2n—1 € {0, 1}*. Moreover, it also produces 2"~
vectors cwy, ..., cwgn—1 € ({0, 1}'8)2a/2, which satisfies the

n—1

following constraint: @ (cw; @& G(s,;)) = €5 - v, where
j=1

es is the d-th unit vector. Fval; outputs the sub-query
result. First, given an input z, it parses © = (v/,d') €
{0,1}%/2 x {0,1}*/2. Next, it expands the row /' via pseu-
dorandom generator G to a vector ({0,1}”)2(1/2. Then, it
takes the exclusive OR of the data set with the sub-query
request and outputs the result.

Given n € N, E,, and O,, are binary arrays with the
length of n x 2"~ 1. E, is the array with an even number
of 1 bits. O,, is the array with an odd number of 1 bits. The
computation process is shown in Fig. 5. The client inputs the
index values to get the first query vector ©. Random matri-
ces and random vectors are selected to operate with the first
query vector to generate multiple second query vectors @.
The client sends the second query vector to multiple nodes.
Each node calculates the data and query vector separately
and sends the obtained response to the client ®. The client

receives the response returned by multiple nodes, calculates
the retrieval value through the aggregation algorithm, and
then obtains the desired retrieval results @.

Since the query result returned by the malicious node
may be empty or inconsistent with the correct result, the
client will have inconsistent sub-request results when col-
lecting the results returned by multiple full nodes. There-
fore, it is necessary to conduct a statistical analysis of the
results generated in the one-to-n query process to extract
the correct results. In other words, a problem posed by
malicious nodes is how to separate the correct results from
invalid ones in the returned answer set. To deal with it, we
count the query results of sub-requests from different full
nodes. Assuming that the proportion of malicious nodes is
less than 50%, we can reconstruct the results by aggregation
and determine them as correct with more than half of con-
sistent results. The result set size corresponds to the number
of connected full nodes. Furthermore, when the proportion
of malicious nodes is constant, the more connected full
nodes, the more accurate obtaining correct results is, but
the higher the system overhead cost. We evaluate the cost
in the experimental section. To describe the distributed
privacy-preserving query more clearly, we depict the query
mechanism with pseudocode, as shown by Algorithm 1.

4.5 Security Analysis

In this section, we analyze the security of Cloak, including
the result correctness and privacy, which is described as
Theorem 1.

Theorem 1. The client can retrieve d; correctly with the result
set, and full nodes cannot get any information about i.

Proof. During the process of query, V¢ (1 < t < m), ¢
can be expressed as a pair of values, namely ¢t = (7, d;).
If v+ # 7, then A,, € E,. Each term cw; ® G(s,, ;)

in @ dj; is an even number of times, which offsets each
j=1

other (ie., é d;y = 0"). Besides, é djid] - de = 0"
i=1 i=1

and d; counteracts each other. On the contrary, if v = -,
then él dio = @ (cw; ® Gls,,.) = es. 1 6 # 6 (ie,
j= j=
t # i), then Gna dji[oy] - dy = 0" (i.e., d; counteracts each
j=1

other). If §; = § (ie, t = i), then é djt[6] = 1 (e,
j=1

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

Algorithm 1 Distributed Privacy-preserving Query

Input: the query index i € {0, ...,1 — 1}

Output: return data d;

1: Let G : {0,1}» — {0,1}?"¥/ be a random 0— 1 number
builder

: Letu <— {0,1}?"1% be a random 0 — 1 number builder

: Let F; 1(z) be the index function on the data D

: Let k; = (&f|cwr]]...]|cwan-1) for 1 <=1i<=mn

: Generate n query requests ¢y, ..., g, and noise randomly
and independently from Gen

T = W N

6: forj € {1,...,n} do

7: The client sends request ¢; to full node p;
8: if node p; is honest then

9: aj «— FEwval(g;, D)
10: else
11: a; is illegal

12: The client receives and verifies a; from all nodes
13: while a; is valid do
14: y «— Dec(ay,aq,...,an,)

15: return d; =y

é dji[0s] - di = dy). Since i € {1,2,...,m}, there exists a
j=1
value of ¢ such that ¢ = i, thereby é d;¢[0¢] - d¢ = dy. For
j=1
the other value of ¢ (¢t # i), we have & dj[0¢] - dp = O"
j=1

and thus é y; = d;. In other words, the user can def-
=1

initely recz)ver d;. Therefore, this protocol is correct. The
distributed point function obtains the key set (k1, k2, ..., ky,)
from Gen(1*, F; ,(z)) and aggregates all results. Each sub-
set (at most n — 1 keys) of k; includes n — 1 strings 9;.
Therefore, any full node can get neither information of the
point function F; ,,(z) nor information of . O

Assume that the proportion of malicious nodes in the
blockchain network is less than p. The value of p can be
different under different application scenarios, for example,
% in the Byzantine Fault Tolerance (BFT) algorithm [18].
The client splits the request into k sub-requests and sends
sub-requests to k full nodes. If all the connected nodes are
malicious, the result returned by the query may be tampered
with and cannot be verified; otherwise, the query result can
be judged whether it is true or not. Considering that there
are at most m malicious nodes, the probability of at least
one honest node is 6, which can be calculated as follows:

O=Cxp*" Ix(1—p)+..+CFxp’x(1-p)P*

k
=Y Cixp i x(1-p)
i=1

_ =t
1

When the number of connected nodes exceeds malicious
nodes, the probability that the query result will not be tam-
pered with is 1. The client can satisfy different confidence
intervals by adjusting the number £ of requesting nodes.
When there are malicious nodes, the number of consistent

5)
(k<m)
(k> m)

8

sub-query results is calculated by statistics to verify the
correctness of the final result. The probability of connecting
more than half the number of honest nodes is ©, which can
be figured out as Equation 6.

k

O= Y Cixp ' x(1-p) ©6)
i=k/2

5 EVALUATION

This paper introduces a general privacy-preserving query
scheme Cloak for blockchain lightweight clients, and in
this section, we present the system setup and performance
evaluation. We analyze the system’s throughput and query
latency under different conditions. In addition, the system’s
average CPU usage rate and memory usage during run-time
is also evaluated.

5.1 Experimental Setup

We perform experiments on the server Intel Xeon (Skylake)
Platinum 8163 with 2.5GHz CPUs, running CentOS 7.9
with four cores and 16 GB Memory. The Cloak system is
programmed in Rust language, an open-source framework
for creating blockchain applications. Integrating Cloak with
platforms such as Ethereum and Hyperledger Fabric has the
potential to significantly enhance their privacy-preserving
capabilities. However, this integration has two main chal-
lenges. The primary challenge arises from the diverse ar-
chitectures of Ethereum and Fabric, each characterized by
distinct design paradigms and consensus mechanisms. To
successfully integrate Cloak, it is imperative to adapt its dis-
tributed query framework to operate seamlessly across these
varying architectures. This can be achieved by developing
platform-specific modules or plugins for Cloak, custom-
tailored to the unique architectural nuances and function-
alities of Ethereum and Fabric. Such an approach requires a
comprehensive understanding of each platform’s intricacies
and meticulous optimization of Cloak’s components. An-
other critical challenge is to ensure compatibility with smart
contracts, which serve as the backbone of the Cloak query
framework for managing distributed queries. Seamless in-
tegration hinges on ensuring compatibility with Ethereum’s
Solidity language and Fabric’s chaincode environment. One
effective strategy is to provide standardized interfaces and
blockchain APIs, facilitating smooth interaction between
Cloak’s query framework and the smart contracts employed
by Ethereum and Fabric. Additionally, the development of
middleware may be necessary to bridge communication
gaps and facilitate seamless integration with the underlying
blockchain infrastructure.

In this paper, we analyze the performance of the Cloak
and compare it with state-of-the-art Spiral, which is a pri-
vate information retrieval scheme based on homomorphic
encryption, and we implement it on the blockchain. The
focus is on four metrics: response time, the throughput
of query processing, computation utilization, and storage
requirements. Response time, namely latency, includes the
query content submitted from the clients to the full node
and the time needed to receive the query answer. The
throughput of query processing is evaluated through the

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

Average (q =3)
I Cloak-L,s E=S Cloak-L3, B Spiral-P,¢ BB Spiral-Ps;

CPU utilization (%)

8 16 32
Dataset N

(a) CPU utilization

Average (q=3)
I Cloak-L;s ES=H Cloak-L;, BEEE Spiral-P,; BB Spiral-Ps;

Memery utilization (%)

8 16 32
Dataset N

(b) Memory usage

Fig. 6: The system cost of computation and storage

operations per second of request, and computation usage
is considered through average CPU utilization. Finally, we
evaluate the system memory footprint for operation.

5.2 System Cost

Computation. The average CPU usage is smaller in Cloak
than in Spiral (Fig. 6(a)). Cloak sends client requests to mul-
tiple full nodes through a distributed function, generating
less computational overhead than the Spiral. The CPU usage
in Cloak is slow linear ascent, with dataset NV from 4 to 64. In
contrast, Spiral sends the encrypted client request to the full
node through a homomorphic encryption function, and this
process generates a large computational overhead, which is
why Spiral-P; ¢ and Spiral-P32 have much higher CPU usage
than Cloak-Lis and Cloak-Lso. The CPU usage in Spiral
changes slightly as the data set increases and depends on
the different lengths of P. The parameter P is responsible
for a significant part of the raw data length in Spiral, which
is why Spiral-P39 has higher CPU usage than Spiral-P¢.

The difference in CPU usage between Spiral and Cloak
is due to the query process method. Unlike homomorphic
encryption queries, the CPU usage for Cloak depends on
the number of connected full nodes and is still directly
proportional to the request size. We also explore the CPU
usage to process requests for different fragments of the
distributed point function in Cloak. As these fragments are
under 3, the length of raw data is about 16 and 32, Cloak-L¢
can effectively process the request and has the lowest CPU
utilization. The usage rate of CPU does not change much
with the dataset, and the overall usage rate of Cloak is less
than 70% compared with Spiral.

Storage. Fig. 6(b) shows Cloak uses nearly equal mem-
ory storage space for the different dataset N. As the dataset

9

increases, the memory utilization of Cloak-Li¢ and Cloak-
L3 remains almost constant at around 4.5% when the
dataset N is more than 8. However, for Spiral-Fs; and
Spiral- P35, the average memory utilization rises slowly with
the increase of dataset N. We can observe that Spiral’s
memory usage is, on average, more than twice as high as
Cloak’s for different data sets.

Cloak mainly processes the query’s request data frag-
ment. For the same number of query fragments, the client
can choose a small number of connected full nodes to
minimize memory usage. Cloak’s memory usage is almost
unaffected by the transaction data volume size. However,
Spiral needs to deal with the encrypted data of both requests
and raw transaction data. As the dataset grows, the volume
of transactions increases and more memory is required to
load ciphertext data. Therefore, the Spiral’s memory utiliza-
tion keeps increasing with the dataset in a small range.

5.3 Query Performance Analysis

Throughput. Fig. 7(a) shows the throughput comparison
under different workloads for Cloak. Note that the measure-
ments have no regard for the network malfunction. When a
query fragment fails during the entire operation, the request
is resubmitted, ensuring that all requests are completed suc-
cessfully. Our Cloak uses distributed processing of requests,
which can be sent simultaneously in parallel compared
to Spiral with single serial processing. The throughput of
distributed requests in Cloak-L4, Cloak-Lg, and Cloak-Li¢
can be maintained above 100 operations per second in the
different workloads, which improves by more than 40%
compared with Cloak-L3y in dataset 64. With the dataset
increase, there is a flattening off and then a slight decline,
which is insignificantly small since the request processing
capability does not continue to grow.

When processing different data lengths, we observe that
the throughput of Cloak-L4 and Cloak-Lg remains stable as
the dataset within 64. The reason is that the shorter data
length can be quickly calculated by the full node, and the
request size is smaller than Cloak-Lis and Cloak-L3s. In
Spiral, the request operation is generated by homomorphic
encryption, which is processed in a single full node and
needs more computation resources. Therefore, to be fair, we
only compare distributed multi-node Cloak with different
parameters, not centralized single-node Spiral.

Request size. Fig. 7(b) shows the request size of Cloak
and Spiral during the dataset from 4 to 64 and the data
length from 16 to 32. The client sends requests to full nodes,
and the request size stands for the amount of network over-
head occupied. Cloak-L;¢ and Cloak-L3, generate smaller
request data compared with Spiral-Li¢ and Spiral-L3; un-
der the dataset from 4 to 64. Cloak keeps the request size
within 0.5 KB as the dataset increases.

For the Spiral with homomorphic encryption, we evalu-
ate Spiral-L;¢ and Spiral-L32, with the same raw data length
compared to the Cloak. They have more than 15x and 20x
request sizes compared with Cloak-L;s. When processing
the dataset within 64, we observe that Spiral-Ls and Spiral-
L3y greatly exceed Cloak-Li¢ and Cloak-Lss all the time.
The reason is that the ciphertext data generated by homo-
morphic encryption is much larger than the query fragment

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

10

. Average (g =2) Average (q = 3) . Average (g =3)
EmA Cloak-L, EEM Cloak-Lg EEER Cloak-L,, HEER Cloak-Ls; — [Cloak-L;¢ ESS Cloak-L3; B Spiral-P1s BBE Spiral-Ps; [Cloak-L;¢ ESS Cloak-L3; B Spiral-P1s BB Spiral-Ps;
o 40;-"10‘
g 10° 8
10°
g g
L 1 @
E JJ; 102
2 £
8‘ 10° gm]
-4
10 100)
4 8 16 32 64 8 16 32 8 16 32
Dataset N Dataset N Dataset N
(a) Throughput (b) Request size (c) Latency
Fig. 7: The comparison of query performance
Average (N = 64) Average (N =16) - Average (N = 8)
B TLS E= Cloak-q; HHE Cloak-g3 EEE Cloak-q4 — ¥ TLS E= Cloak-q; HEE Cloak-g; EEE Cloak-gs B TLS E=5 Cloak-q; HE Cloak-g3 EEM Cloak-qs
. J(‘;,)‘10 -
—_ O 102
3 £ c
3‘“ g ” g 10°
]]
P} o ©
Qi S 9]
Q_]D‘
g o
4
10° 100

8 16
Lambda A

8
Lambda A

(a) Latency

(b) Request size

2

16 32 4 8 16 32
Lambda A

(c) Throughput

Fig. 8: The impact of lambda with different query fragments

generated by the distributed point function. The request size
also increases with the length of data, which causes Cloak-
L3 to be more than 1.5x compared with Cloak-Lazs.

Latency. Fig. 7(c) shows that the average query latency
increases slightly with the number of workloads growth,
which is the same with the different system parameters L
and P for Cloak and Spiral. The average latency requires a
total query time to divide the number of requests in Cloak.
In contrast, Spiral query focuses on a single query process,
which obtains a most common round trip. The average
latency reflects how long a client waits for response results
during a search. There is little difference between the latency
of Cloak-L;¢ and Cloak-Lgs, with the average latency less
than 0.5 ms. But for Spiral-Li¢ and Spiral-Ls,, the latency
is much higher than Cloak, requiring more than 2 ms to
process dataset 64.

We can conclude that the size of requests in Spiral is
larger than the distributed query fragments generated by
Cloak. As shown in Fig. 7(c), when the dataset is within 64,
the latency of Spiral-L;s and Spiral-Lsy is more than four
times that of Cloak-Lg and Cloak-L35. With the increase in
workloads, the query latency of Cloak and Spiral under dif-
ferent parameters approaches gradually. The gap between
Cloak-L1s and Cloak-L3s is only 3 us for dataset 64. Besides,
the gap between Spiral-L,6 and Spiral-L3; decreases from
1.2 ms to 0.7 ms when the dataset increases from 4 to 64.

5.4 Impact of System Parameter

In the following, we evaluate the impact of various system
parameters on Cloak’s latency, request size, and throughput
performance in Fig.8. Note that the TLS query method

means a solution that relies on network transport layer secu-
rity with plaintext requests. The lightweight client submits
the query request serially without extra camouflage and
protection. We set lambda values from 4 to 32 to test the
scalability of Cloak. Fig.8(a) and Fig.8(b) reveal the results of
query latency and request size with query fragments from
2 to 4. From these figures, we can draw a conclusion that
the query latency of plaintext remains almost unchanged
as the lambda enlarges, and the request size of plaintext
and Cloak-gs, Cloak-g3, and Cloak-g4 increases linearly with
the growth of lambda. Cloak has a slower response time
than Plaintext under different lambada since the number of
sub-requests is at least 2. It is less effective to process the
request distribution and result aggregation. However, the
gap between them is not obvious, only 0.4 ms at most. When
the value of lambda is increased, the overall request size
grows simultaneously and more than 20 bytes. The reason
is that the request size is positively correlated with the data
length (i.e., the value of \).

Next, we assess the impact of lambda on throughput.
Fig.8(c) demonstrates the query operations within 10 sec-
onds under different query fragments, and the lambda
changes from 4 to 32 with the average of dataset IV at 8.
We can notice that the query operations of plaintext and
Cloak-go are more than 1400, which declined slightly with
the lambda. When the value of lambda is more than 16,
the operations of Cloak-g3 and Cloak-g4 decrease noticeably
since more computations are needed with a large num-
ber of query fragments (i.e., the value of g.) The plain-
text query with no-privacy protections performs relatively
more effectively than Cloak-g2, Cloak-g3, and Cloak-g4 as
it is centralized processing of requests with no additional

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

computational overhead. In Cloak, the distributed query
fragments are sent to multiple nodes for processing, and
the throughput depends not only on the number of re-
quested nodes but also on the request allocation and result
aggregation. In a plaintext query, the query result is directly
obtained from the connected full node, and other nodes do
not participate. Hence, the throughput performance does
not rely on the number of nodes but on the processing time
of full nodes.

6 RELATED WORK

This paper’s related work mainly includes privacy-
preserving queries in a distributed database and data
queries on the blockchain. The comparison of Cloak with
existing query methods is shown in Table 3.

6.1 Privacy-preserving Query in Distributed Database

Many user files are currently stored on remote servers and
retrieved as needed. Clients encrypt the raw data and then
upload it to the remote server to protect the file content.
This data encryption method can protect remote data and
prevent the leakage of server-side data. The privacy pro-
tection technology of distributed databases is mainly data
encryption [19].

In [20], Song et al. present the first study of searchable
encryption, which is a query method in view of ciphertext
to resolve data privacy leakage. In this method, the basic
technology of cryptography is utilized to protect the se-
curity of client privacy data. Aiming at the shortcomings
of searchable encryption schemes, Liu et al. [2]] propose
a novel searchable encryption method SE-EPOM. It can
realize multi-keyword queries, hide the query mode, and
resist keyword guessing attacks. However, there is access
pattern leakage when searching encrypted files. To accom-
plish timely and accurate truth discovery while protecting
individual privacy, Pang et al. [23] propose a personalized
privacy-preserving truth discovery (PPPTD) framework for
crowdsourcing data streams. To preserve the privacy of
sensitive data, Wang et al. [24] propose a novel ownership-
enhanced attribute-based encryption query method AESM?
for multi-owner and multi-user systems. DORY [22] uses
a Private Information Retrieval (PIR) protocol that hides the
indexed columns where the data is located on multiple
servers during the query process to preserve search access
patterns. The request is shared through different replica
nodes during the search to ensure that the access pattern
is not leaked. DORY uses batching to amortize costs instead
of executing a two-phase commit between the master and
replicas for every update. Although distributed trust with
the multiple-copy node is adopted, there is a premise that
the master node must be a trusted node with centralized
dependency.

These works ignore the privacy protection of request
content when clients initiate a query since the assumption
of an honest but curious centralized server. The distributed
database still relies on the centralized authorization server,
and the privacy of the requested content depends on the
server’s security. The inherent problem with the blockchain
is that the nodes are decentralized and independent. The

11

malicious nodes are unknown, which may cause the infor-
mation leakage of query requests.

6.2 Data Query on Blockchain

Data queries on the blockchain have gained increasing at-
tention since they can provide tamper-resistant consensus
data. Some efforts provide verifiable query mechanisms to
guarantee the reliability of query results from malicious full
nodes.

In [26], a vChain solution is proposed by adding verifi-
able data structures built based on accumulators to the con-
struction of the block. vChain proposes two authenticated
indexing structures: one for intra-block data and another for
inter-block data, to enable batch verification. AttDigest sup-
ports batch verification of multiple objects both within and
across blocks. This method adopts a multiset accumulator to
make efficient batch validation of Boolean and range query
results. However, the public key size will be much larger
relative to the data size, and the larger SkipList will increase
the service provider’s CPU time. LineageChain [27] has pro-
posed a novel skip list index to achieve an efficient on-chain
provenance query to speed up the location. This method
uses the skip list hash table in the block header to check
whether the block is authentic and valid. However, it cannot
support integrity verification of query results, as it only sup-
ports version-based queries against specific state IDs. In the
hybrid-storage blockchain, Zhang et al. [28] present a new
data verifiable structure, called GEM?-Tree, by constructing
a two-level index to reduce gas consumption where smart
contracts update data structures on the chain and make the
query results verifiable. In the GEM?2-Tree, new objects can
be consistently inserted into the smaller SMB-trees, which
is more gas-efficient. Objects indexed by the SMB-trees can
be batch-merged into the MB-tree to optimize update costs.
Wu et al. [29] present a verifiable query layer (VQL), which
is a middleware layer to ensure efficient and verifiable query
service for blockchain systems.

However, these query efforts do not consider another
important query aspect, namely, privacy protection. Med-
ical and health data privacy protection is an important
application field of blockchain technology in medical treat-
ment [30]. To protect the original data, Azaria et al. [31]
propose MedRec, a novel type of multiple replica data
maintenance method that uses blockchain technology to
process medical and health data. MedRec uses identity
verification mechanisms and shared data management to
ensure medical data privacy. In [32], a blockchain-based
privacy protection quality control mechanism is designed
to prevent data from being tampered with and ensure fair
distribution of rewards during the execution of mobile
crowd-sensing (MCS). Yue et al. [33] propose a Health-
care Data Gateways (HGD) model based on blockchain, en-
abling users to quickly and securely control and share their
medical data. HGD offers a purpose-centric access control
model to protect user health data privacy. The existing data
protection mechanism mainly focuses on controlling user
authentication functions, and data access through identity
authentication realizes the privacy protection of personal
information [34]. However, these works ignore the privacy
protection of client query requests in the data query process.

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

12

TABLE 3: Comparison of Cloak with existing query methods

Privacy-preserving

Category Approach Transmission Processing Batching Verifiable
SE-EPOM [21] v % x v
Distributed Database DORY [22] ® v v 4
Spiral [25] 4 v ® v
vChain [26] ® ® v 4
LineageChain [27] ® ® 4 4
GEM?2-Tree [28] ® % v v
. MedRec [31] v t 4 ® v
Blockchain HGD [23] % v % %
BITE [7] v v ® ®
Cloak v v v v
NOTE: ¢ :support % :poor support

Matetic et al. [7] presented a lightweight client’s privacy
protection (BITE) for Bitcoin by leveraging a trusted exe-
cution environment. BITE leverages SGX to provide all the
necessary data for lightweight clients to verify and create
transactions, enabling privacy protection for lightweight Bit-
coin clients. However, the enclave size is limited in SGX and
cannot be widely used. In addition, the data is not encrypted
and may be leaked during transmission under a man-in-the-
middle attack. BITE can only defend against side-channel
attacks, but SGX will also be subject to rollback and other
attacks [6], [9], [35]. Nonetheless, this method’s restriction
is that it is merely applicable to the node equipped with
trusted hardware, such as SGX, whose limitation is that it re-
lies on centralized hardware. In contrast, we propose Cloak,
which adopts a distributed query framework to preserve the
privacy of client requests. In Cloak, the batching requests
are distributed to multiple full nodes across the network to
tolerate malicious behaviors. Full nodes receiving batching
requests process each query and generate a response, which
is then returned to the requester. This approach leverages
the independent ledger characteristic of blockchain itself,
without the need for additional hardware environments.

7 CONCLUSION

Supporting privacy-preserving queries, particularly for
lightweight clients, is crucial but challenging to achieve in
blockchain systems. This paper presents Cloak, a privacy-
preserving query framework, for the lightweight client
using the distributed query. Cloak decomposes a client’s
request content into multiple sub-requests and sends them
to numerous independent full nodes. Then, it aggre-
gates the query results to serve privacy-preserving queries
for lightweight clients. The experimental results demon-
strate that our query method can protect the privacy of
lightweight clients without introducing additional hard-
ware support. At the same time, the query performance is
improved by up to 4x, and the storage overhead is reduced
by 50% compared with the state-of-the-art Spiral.

As blockchain systems continue to evolve rapidly, the
demand for querying and processing data grows in tandem.
While Cloak effectively streamlines query processing, its
performance may diminish with the increasing size and
complexity of blockchain data. While Cloak can support
vector data queries, it may encounter challenges with com-
plex keyword queries. Exploring advanced indexing and

data retrieval techniques is crucial for managing large-
scale blockchain data, a critical step towards enhancing
Cloak’s scalability and performance. Additionally, applying
machine learning algorithms for predictive analysis and
query execution optimization could further enhance Cloak’s
capabilities.

ACKNOWLEDGMENTS

This work was supported by National Key Research
and Development Program of China under Grant No.
2021YFB2700700, Key Research and Development Program
of Hubei Province No. 2021BEA164.

REFERENCES

[1] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System,"
2008. https:/ /bitcoin.org/bitcoin.pdf

[2] R. Han, J. Xiao, X. Dai, S. Zhang, Y. Sun, B. Li, and H. Jin, "Vas-
sago: Efficient and Authenticated Provenance Query on Multiple
Blockchains," in Proceedings of the 40th International Symposium on
Reliable Distributed Systems (SRDS 21), 2021, pp. 132-142.

[3] X. Dai, J. Xiao, W. Yang, C. Wang, J. Chang, R. Han, and H. Jin,
"LVQ: A Lightweight Verifiable Query Approach for Transaction
History in Bitcoin," in Proceedings of the 40th International Conference
on Distributed Computing Systems (ICDCS 20), 2020, pp. 1020-1030.

[4] H.Jin and J. Xiao, "Towards Trustworthy Blockchain Systems in the
Era of "Internet of Value": Development, Challenges, and Future
Trends," Science China Information Sciences (SCIS), vol. 65, no. 153101,
pp. 1-11, 2022.

[5] S. Jiang, J. Liu, J. Chen, Y. Liu, L. Wang, and Y. Zhou, "Query in-
tegrity meets blockchain: A privacy-preserving verification frame-
work for outsourced encrypted data," IEEE Transactions on Services
Computing (TSC), vol. 16, no. 3, pp. 2100-2113, 2023.

[6] R. Cheng, E. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, "Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in Pro-
ceedings of the 2019 IEEE European Symposium on Security and Privacy
(EuroS&P 19), 2019, pp. 185-200.

[7] S. Matetic, K. Wiist, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, "BITE: Bitcoin lightweight client privacy using trusted
execution," in Proceedings of the 28th USENIX Security Symposium,
2019, pp. 783-800.

[8] M. Li, J. Zhu, T. Zhang, C. Tan, Y. Xia, S. Angel, and H. Chen,
"Bringing Decentralized Search to Decentralized Services," in Pro-
ceedings of the 15th USENIX Symposium on Operating Systems Design
and Implementation, 2021, pp. 331-347.

[9] Y. Ren,]. Li, Z. Yang, PP. Lee, and X.Zhang, "Accelerating En-
crypted Deduplication via SGX," in Proceedings of the 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 957-971.

[10] Y. Wang, S.E. Sun, J. Wang,] K. Liu, and X. Chen, "Achieving
searchable encryption scheme with search pattern hidden," IEEE
Transactions on Services Computing (TSC), vol. 15, no. 2, pp. 1012-
1025, 2020.

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

[11] M. Li, Y. Chen, C. Lal, M. Conti, M. Alazab, and D. Hu, "Euno-
mia: Anonymous and secure vehicular digital forensics based on
blockchain," IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 1, pp. 225-241, 2023.

[12] N. Craswell, D. Campos, B. Mitra, E. Yilmaz, and B. Billerbeck,
"ORCAS: 20 million clicked query-document pairs for analyzing
search," in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, 2020, pp. 2983-2989.

[13] C.Zhang, C. Xu, H. Wang, J. Xu, and B. Choi, "Authenticated key-
word search in scalable hybrid-storage blockchains," in Proceedings
of the 2021 IEEE 37th International Conference on Data Engineering
(ICDE 21), 2021, pp. 996-1007.

[14] M. Mehrnezhad, K. Coopamootoo, and E. Toreini, "How Can and
Would People Protect From Online Tracking?" in Proceedings of the
2022 Privacy Enhancing Technologies, 2022, pp.105-125.

[15] A. EL Azzaoui, H. Chen, SSH. Kim, Y. Pan, and J.H. Park,
"Blockchain-Based Distributed Information Hiding Framework for
Data Privacy Preserving in Medical Supply Chain Systems," Sen-
sors, vol. 22, no. 4, pp.1371-1387, 2022.

[16] M. Fang, Z. Zhang, C. Jin, and A. Zhou, "High-performance smart
contracts concurrent execution for permissioned blockchain using
SGX," in Proceedings of the 2021 IEEE 37th International Conference on
Data Engineering (ICDE 21), 2021, pp. 1907-1912.

[17] N. Gilboa and Y. Ishai, "Distributed point functions and their ap-
plications," in Proceedings of the 2014 Annual International Conference
on the Theory and Applications of Cryptographic Techniques, 2014, pp.
640-658.

[18] C. Stathakopoulou, S. Riisch, M. Brandenburger, and M. Vukoli¢,
"Practical byzantine fault tolerance," In Proceedings of the 40th Inter-
national Symposium on Reliable Distributed Systems (SRDS 21), 2021,
pp- 34-45.

[19] M. Bailleu, D. Giantsidi, V. Gavrielatos, V. Nagarajan, and P. Bhato-
tia, "Avocado: A Secure In-Memory Distributed Storage System," in
Proceedings of the 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 2021, pp. 65-79.

[20] X.D. Song, D. Wagner, and A. Perrig, "Practical techniques for
searches on encrypted data," in Proceedings of the 2000 IEEE Sym-
posium on Security and Privacy (S&P), 2000, pp. 44-55.

[21] X. Liu, G. Yang, W. Susilo, J. Tonien, X. Liu, and J. Shen, "Privacy-
Preserving Multi-Keyword Searchable Encryption for Distributed
Systems," IEEE Transactions on Parallel and Distributed Systems, vol.
32, no. 3, pp. 561-574, 2021.

[22] E. Dauterman, E. Feng, E. Luo, R.A. Popa, and L. Stoica, "DORY:
An Encrypted Search System with Distributed Trust," in Proceedings
of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), 2020, pp. 1101-1119.

[23] X. Pang, Z. Wang, D. Liu, J.C. Lui, Q. Wang, and]. Ren,
"Towards personalized privacy-preserving truth discovery over
crowdsourced data streams,” IEEE/ACM Transactions on Networking,
vol. 30, no. 1, pp. 327-340, 2021.

[24] M. Wang, Y. Miao, Y. Guo, H. Huang, C. Wang, and X. Jia, "AESM?
Attribute-Based Encrypted Search for Multi-Owner and Multi-User
Distributed Systems," IEEE Transactions on Parallel and Distributed
Systems, vol.34, no.1, pp.92-107, 2022.

[25] S.J. Menon and D.J. Wu, "Spiral: Fast, high-rate single-server PIR
via FHE composition," in Proceedings of the 2022 IEEE Symposium on
Security and Privacy (S&P), 2022, pp. 930-947.

[26] C.Xu, C. Zhang, and J.L. Xu, "vChain: Enabling Verifiable Boolean
Range Queries over Blockchain Databases," in Proceedings of the 2019
International Conference on Management of Data (SIGMOD 19), 2019,
pp. 141-158.

[27] P.C.Ruan, G. Chen, T.T.A. Dinh, Q. Lin, B.C. Ooi, and M.H. Zhang,
"Fine-Grained, Secure and Efficient Data Provenance on Blockchain
Systems," in Proceedings of the 2019 VLDB Endowment, 2019, pp. 975-
988.

[28] C. Zhang, C. Xu,]J. Xu, Y. Tang, and B. Choi, "GEM?2-Tree: A Gas-
Efficient Structure for Authenticated Range Queries in Blockchain,"
in Proceedings of the 2019 IEEE 35th International Conference on Data
Engineering (ICDE 19), 2019, pp. 842-853.

[29] H. Wu, Z. Peng, S. Guo, Y. Yang, and B. Xiao, "VQL: efficient
and verifiable cloud query services for blockchain systems," IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 6, pp.
1393-1406, 2021.

[30] X. Tang, C. Guo, KK.R. Choo, Y. Liu, and L. Li, "A secure and
trustworthy medical record sharing scheme based on searchable
encryption and blockchain," Computer Networks, vol. 200, no. 1, pp.
108540, 2021.

13

[31] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, "Medrec: Using
blockchain for medical data access and permission management,”
in Proceedings of the 2nd International Conference on Open and Big Data
(OBD), 2016, pp. 25-30.

[32] J. An, Z. Wang, X. He, X. Gui, J. Cheng, and R. Gui, "PPQC: A
blockchain-based privacy-preserving quality control mechanism in
crowdsensing applications," IEEE/ACM Transactions on Networking,
vol. 30, no. 3, pp. 1352-1367, 2022.

[33] X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, "Healthcare data
gateways: found healthcare intelligence on blockchain with novel
privacy risk control," Journal of medical systems, vol. 40, no. 10, pp.1-
8, 2016.

[34] N. Waheed, X. He, M. lIkram, M. Usman, S.S. Hashmi, and M.
Usman, "Security and privacy in IoT using machine learning and
blockchain: Threats and countermeasures," ACM Computing Surveys
(CSUR 20), vol. 53, no. 6, pp. 1-37, 2020.

[35] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y.T. Hou, "PrivacyGuard:
Enforcing private data usage control with blockchain and attested
off-chain contract execution," in Proceedings of the 2020 European
Symposium on Research in Computer Security (ESORICS 20), 2020, pp.
610-629.

Jiang Xiao (Member, IEEE) is currently a pro-
fessor in School of Computer Science and Tech-
nology at Huazhong University of Science and
Technology (HUST), Wuhan, China. Jiang re-
ceived the B.Sc. degree from HUST in 2009 and
the Ph.D. degree from Hong Kong University of
Science and Technology (HKUST) in 2014. She
has been engaged in research on blockchain,
distributed computing, big data analysis and
management, and wireless indoor localization.
Awards include Hubei Dawnlight Program 2018,
CCF-Intel Young Faculty Research Program 2017, and Best Paper
Awards from IEEE ICPADS/GLOBECOM 2012.

Jian Chang received the M.S. degree in
School of Software from Central South Univer-
sity (CSU), Changsha, China, in 2019. He is
currently working toward the Ph.D. degree in the
School of Computer Science and Technology at
e Huazhong University of Science and Technology

- (HUST), Wuhan, China. His current research
N interests include blockchain and distributed sys-
il tems.

Licheng Lin received the B.Sc. degree from

Wuhan University of Technology (WHUT),

Wuhan, China, in 2022. He is currently pursu-

ing the M.S. degree in the School of Computer

Science and Technology from HUST. His current

—— research interests include blockchain and dis-
o tributed systems.

IEEE/ACM TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXX

Binhong Li received the B.Sc. degree from Cen-
tral South University (CSU), Changsha, China, in
2021. He is currently pursuing the M.S. degree
in the School of Computer Science and Technol-
ogy from HUST. His current research interests
include blockchain and distributed systems.

Xiaohai Dai (Member, IEEE) received the Ph.D.
degree from the School of Computer Science
and Technology, Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China,
in 2021. He is currently a Post-Doctoral Re-
searcher with the School of Computer Science
and Technology, HUST. His current research in-
terests include blockchain and distributed sys-
tems. His awards include the Outstanding Cre-
ative Award in 2018 FISCO BCOS Blockchain
Application Contest and the Top Ten in Fin-

Techathon 2019.

Zehui Xiong (Member, IEEE) received the Ph.D.
degree from Nanyang Technological University,
Singapore. He is currently an Assistant Profes-
sor with the Singapore University of Technol-
ogy and Design, and an Honorary Adjunct Se-
nior Research Scientist with Alibaba-NTU Sin-
gapore Joint Research Institute, Singapore. He
was a Visiting Scholar with Princeton Univer-
sity, Princeton, NJ, USA, and the University of
Waterloo, Waterloo, ON, Canada. He has au-
thored or coauthored more than 150 research
papers in leading journals and flagship conferences and many of them
are ESI Highly Cited Papers. His research interests include wireless
communications, Internet of Things, blockchain, edge intelligence, and
Metaverse.

Kim-Kwang Raymond Choo (Senior Member,
IEEE) received the Ph.D. degree in information
security from the Queensland University of Tech-
nology, Australia, in 2006. He currently holds
the Cloud Technology Endowed Professorship
at The University of Texas at San Antonio. He
was a recipient of the 2019 IEEE Technical Com-
mittee on Scalable Computing Award for Ex-
cellence in Scalable Computing (Middle Career
Researcher) and the IEEE Systems, Man, and
Cybernetics Technical Committee on Homeland
Security (TCHS) Research and Innovation Award in 2022. He is the
Founding Co-Editor-in-Chief of ACM Distributed Ledger Technologies:
Research and Practice and the Founding Chair of the IEEE TEMS Tech-
nical Committee on Blockchain and Distributed Ledger Technologies.

14

Keke Gai (Senior Member, IEEE) received the
Ph.D. degree in computer science from Pace
University, New York, NY, USA. He is currently a
Professor at the School of Cyberspace Science
and Technology, Beijing Institute of Technology,
Beijing, China. He has published 4 books and
more than 150 peer-reviewed journal/conference
papers. He serves as Associate Editors for
a number of decent journals, including IEEE
Transactions on Dependable and Secure Com-
puting, Journal of Parallel and Distributed Com-
puting, etc. He also serves as a co-chair of IEEE Technology and
Engineering Management Society’s Technical Committee on Blockchain
and Distributed Ledger Technologies, a Standing Committee Member
at China Computer Federation-Blockchain Committee, a Secretary-
General at IEEE Special Technical Community in Smart Computing. His
research interests include cyber security, blockchain, privacy-preserving
computation, decentralized identity.

Hai Jin (Fellow, IEEE) is a Cheung Kung Schol-
ars Chair Professor of computer science and
engineering at Huazhong University of Science
and Technology (HUST) in China. Jin received
his Ph.D. in computer engineering from HUST in
@ 1994. In 1996, he was awarded a German Aca-
demic Exchange Service fellowship to visit the
\ Technical University of Chemnitz in Germany. Jin
worked at The University of Hong Kong between
1998 and 2000, and as a visiting scholar at the
University of Southern California between 1999
and 2000. He was awarded Excellent Youth Award from the National
Science Foundation of China in 2001. Jin is Fellow of IEEE, Fellow
of CCF, and a member of the ACM. His research interests include
computer architecture, virtualization technology, cluster computing and
cloud computing, peer-to-peer computing, network storage, and network
security.

-

	Introduction
	Motivation and Challenges
	Motivating Examples
	Challenges

	Preliminaries
	Smart Contract
	Distributed Point Function

	System Design
	Design Principles
	Cloak Overview
	Secure Data Transmission
	Distributed Query Process
	Strawman
	Cloak

	Security Analysis

	Evaluation
	Experimental Setup
	System Cost
	Query Performance Analysis
	Impact of System Parameter

	Related work
	Privacy-preserving Query in Distributed Database
	Data Query on Blockchain

	Conclusion
	References
	Biographies
	Jiang Xiao
	Jian Chang
	Licheng Lin
	Binhong Li
	Xiaohai Dai
	Zehui Xiong
	Kim-Kwang Raymond Choo
	Keke Gai
	Hai Jin

